Reaktionen mit Aziridinen, 42¹⁾

Die Regioselektivität der Ringöffnung von aktivierten 2,2-Dimethylaziridinen durch Carbanionen des β-Dicarbonyltyps. Einfluß der Größe des Nucleophils

Berthold Buchholz und Helmut Stamm*

Pharmazeutisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 364, D-6900 Heidelberg

Eingegangen am 10. Februar 1987

Die 1-Acyl-2,2-dimethylaziridine 1a-c werden durch die substituierten Ethyl-cyanacetate 3M,P (M = Methyl, P = Phenyl) in Ethanolat-Lösung anomal (zwischen N und CMe2) geöffnet, während Diethylmalonat (2H) den Aziridinring nicht öffnet. Unter gleichen Bedingungen wird 2,2-Dimethyl-1-tosylaziridin (1d) durch Malononitril (4H), Ethyl-cyanacetat (3H), durch 3M und 2H überwiegend bis ausschließlich normal geöffnet. Dabei nimmt der relative Anteil der anomalen Öffnung in der Reihenfolge 4H > 3H > 3M > 2H ab, was mit dem Einfluß der Größe des Nucleophils (jeweiliges Carbanion) auf einen S_N2-Angriff am ("aufgeweiteten") tert. C-Atom von 1d erklärt wird. Die mit dem größten Anion (von 3P) der Reihe beobachtete Dominanz der anomalen Öffnung von 1d (0% "normale Produkte" bei einer Bilanz von 44%) deutet auf einen Wechsel im Reaktionsmechanismus hin, vermutlich zu SET. 1-Acyl-2-phenylaziridin 21 wurde durch das Anion von 3P am Benzyl-C zum stereochemisch einheitlichen Produkt 22 geöffnet.

Die Regioselektivität eines nucleophilen Angriffs an einem aktivierten Dimethylaziridin 1 unter nichtsauren Bedingungen hängt im allgemeinen von der Aktivierungsgruppe X ab^{2,1,3)}. Starke Mono-Aktivierung durch X = Sulfonyl begünstigt normale Öffnung (zwischen N und CH₂), schwache Mono-Aktivierung durch X = Acyl f ührt zu anomaler Ringöffnung (zwischen N und CMe₂).Die Regioselektivität kommt dabei im allgemeinen einer Regiospezifität mindestens sehr nahe. Die anomale Öffnung wurde in der folgenden Weise mit einem SET-Mechanismus erklärt²⁾. Nach Elektron-Transfer vom Nucleophil Nu^- ($Nu^- \rightarrow Nu^+ + e^-$) zum Carbonyl von 1 (X = Acyl) geht das ketylartige Radikal-Anion von 1 homolytisch anomale Ringöffnung ein⁴⁾, wonach schließlich das gebildete tertiäre Radikal mit Nu[•] kombiniert²⁾. Alle Schritte erfolgen dabei im Lösungsmittelkäfig. Die in dieser Weise vorgeschlagene Reaktionsfolge müssen wir inzwischen ergänzen durch die Annahme, daß der allererste Schritt – noch vor dem Elektron-Transfer - die Koordinierung des Gegenions an das aktivierte Aziridin ist, wodurch der nachfolgende SET-Schritt erleichert wird. Auf die Möglichkeit eines Kation-Einflusses wurde in allgemeiner Form bereits hingewiesen: Fußnote¹⁸⁾ in Lit.⁵⁾.

Im folgenden berichten wir⁶⁾ über die Regioselektivität der Ringöffnung von 1a-d durch Carbanionen der Malonsäure-Derivate, wobei sich neue Aspekte mechanistischer Art ergeben.

Die Umsetzungen von 1a-c sind in Tab. 1 (Versuche 1-4) aufgeführt. Die isolierten Ringöffnungsprodukte **8M**,

Reactions with Aziridines, 42^{1} . — The Regioselectivity of the Ring Opening of Activated 2,2-Dimethylaziridines by Carbanions of the β -Dicarbonyl Type. Influence of the Size of the Nucleophile

The aziridine ring of the 1-acyl-2,2-dimethylaziridines 1a-c is cleaved abnormally (between N and CMe₂) by the substituted ethyl cyanoacetates 3M,P (M = methyl, P = phenyl) in ethanolic ethoxide solution, while the ring is not cleaved by diethyl malonate (2H). Under the same conditions, 2,2-dimethyl-1-tosylaziridine (1 d) is opened by malononitrile (4H), ethyl cyanoacetate (3H), 3M, and 2H in a predominant or exclusive normal manner (between N and CH₂) with the relative portion of abnormal opening decreasing in the sequence 4H > 3H > 3M > 2H. The latter finding is rationalized by an influence of the size of the nucleophile (the respective carbanion) on an S_N2 attack at the ("widened") tert. C atom of 1d. A dominating abnormal opening of 1d (0% "normal products" from a 44% material balance of products) was observed with the largest anion (of 3P) of the series, pointing to a change in mechanism, presumable to SET. 1-Acyl-2-phenylaziridine 21 was opened at the benzylic C by the anion of 3P yielding the stereochemically uniform product 22.

5aP und **6bP** sind immer vom anomalen Typ in Einklang mit einem SET-Mechanismus. Der Ablauf von Folgereaktionen (Versuche 1-3) entspricht unseren früheren Erfahrungen. Die Cyclisierung zum Pyrrolidon ist bei dem (im Vergleich zu **1b**, c) sterisch anspruchsvolleren Acylrest Benzoyl verlangsamt^{7,8)} (Versuch 1). Die alkoholytische Entacylierung bei fehlender CH-Acidität des Pyrrolidons läßt sich durch Überschuß der CH-aciden Komponente nur dann verhindern, wenn diese ausreichend acid ist⁸⁾ (Versuch 2).

Bei der Umsetzung von Malonester-Anion mit 1c (Versuch 4) konnten keine Anzeichen für eine Ringöffnung entdeckt werden. Der charakteristische Geruch der freien Aziridinbase 9 sowie die Identifizierung von 11 (neben nicht umgesetztem 1c) im Reaktionsgemisch zeigen, daß sowohl normale wie anomale Öffnung durch das Anion von 2H sehr langsam ablaufen, wenn überhaupt, und daß sie deshalb durch die sonst⁹⁾ langsamere Carbonylreaktion abgelöst werden. Das Ausbleiben einer anomalen Öffnung würde zu dem in der Einleitung ergänzten SET-Mechanismus passen. Unter den Reaktionsbedingungen sollte das Anion von 2H nämlich ganz überwiegend als chelatisiertes Ionenpaar vorliegen¹⁰⁾ und dadurch eine Koordinierung des Natrium-Ions an 1c erschweren. Die sterisch verlangsamte normale Öffnung nach S_N2 entspricht durchaus den Erwartungen^{2,11)}.

Die grundsätzliche Möglichkeit eines S_N^2 -Angriffs durch Malonester-Anion bei weniger alkoholyseempfindlicher und vor allem sehr viel stärkerer¹¹⁾ Aktivierungsgruppe X (= Tosyl) zeigt Versuch 5 mit einer guten Ausbeute an **12H** bei der Umsetzung von **1d** mit Malonester **2H**. Die ¹H-NMR-Spektren des rohen Produktgemischs (Überschuß **2H**) wie auch der Chromatographie-Fraktionen gaben keinen Anhalt für ein isomeres (anomales) Produkt. Ganz anders verhielt sich Malononitril-Anion gegenüber demselben Aziridin (Versuch 6). Bei kürzerer Reaktionszeit wurden (in einer Gesamtausbeute wie in Versuch 5) die stellungsisomeren Aminopyrrolinnitrile **15** und **17** erhalten, die sich erwartungsgemäß nur schwierig und nur zu einem kleineren Teil voneinander trennen ließen.

Wir haben keinen Grund¹², dieses auf den ersten Blick merkwürdige Nebeneinander von normaler und anomaler Ringöffnung als mechanistisches Nebeneinander von S_N^2 und SET anzusehen. Vielmehr muß man damit rechnen, daß die stark aufgeweitete tert. Alkylstruktur der 2-Position von

Tab. 1. Raumtemperatur-Umsetzungen von 1a-d mit den Anionen von 2, 3 und 4 in Ethanol

Ver- such	1	mmol 2, 3, 4	Na	EtOH ml	Reak- tion	Produkte ^{a)} (%)
1	5 1a .	15 3M	5	15	10 d	>68 8M , 74 PhCO ₂ Et
2	10 1 a	30 3 P	10	20	20 d	60 5aP
3	10 1b	30 3 P	10	10	21 d	59 6bP
4	7 1 c	14 2H	7	20	7 d	9 ^{b)} , 11 ^{c)} , 1c ^{c)}
5	8 1 d	24 2H	8	25	2 d	62 12H
6	10 1 d	25 4H	10	30	4 h	16 (47) 15, 5 (18) 17
7	10 1d	20 3H	10	50	3 d	25 (58) 16, 0.5 (5) 18, >2 13H
8	7 1 d	15 3M	7	20	1 d	16 (47) 14M, 12 (16) 13M, 0 (\leq 24) 12M ^d)
9	10 1d	12.4 3P	10	30	1 d	(6 dM1?, 7 dM?) ⁽⁵⁾ 39 8P, 5 19 ⁹

^{a)} Ausbeuten in Klammern It. ¹H-NMR-Analyse. – ^{b)} Identifiziert durch den charakteristischen Geruch von 9. – ^{c)} Identifiziert durch ¹H-NMR-Vergleich der Produktmischung mit authentischem Material. – ^{d)} Nicht rein isoliert, aber Struktur durch ¹H-NMR- und IR-Spektrum gesichert. – ^{e)} Möglicherweise in sehr kleiner Menge gebildet, siehe Text. – ⁰ Lt. DC waren mindestens 6 weitere Verbindungen im Reaktionsgemisch anwesend.

1d grundsätzlich einen S_N^2 -Angriff zuläßt und daß ein solcher Angriff in einem gewissen Umfang mit dem S_N^2 -Angriff an der stark verzerrten Neopentylstruktur der 3-Position konkurrieren kann, wenn das Nucleophil klein genug ist. Einen eklatanten und überzeugenden experimentellen Beleg dafür gaben wir in Lit.¹¹, indem Methanolat mit 1d die beiden isomeren Produkte bildete, während das größere Ethanolat 1d nur normal öffnete. Das Anion von 4H ist ebenfalls ein sehr kleines Nucleophil und liefert in Versuch 6 ein Produktgemisch von vergleichbarem Isomerenverhältnis wie Methanolat¹¹.

Cyanessigester **3H** steht zwischen **2H** und **4H**, was Struktur und Größe des Anions anbetrifft. Wenn das Größenargument stimmt, sollte nur sehr wenig oder gar keine anomale Öffnung zu beobachten sein. Versuch 7 verifiziert das mit 5% anomalem Produkt neben mehr als 60% normalen Produkten. Die Ungleichheit der beiden elektronenziehenden Gruppen Y und Z erlaubt zwei verschiedene Ringschlußreaktionen des Primärproduktes vom Typ 5 (mit "anomaler" oder "normaler" Substitution). Bei der dominierenden normalen Öffnung sind beide Endprodukte (**13h** und 16) faßbar. Bei der anomalen Öffnung sollte ebenso nicht nur das isolierte 18, sondern auch das anomale Pendant von
13H entstehen, letzteres aber in einer Menge, die unter der Nachweisgrenze unserer Arbeiten liegt.

Vergrößerung des Anions von 3H muß den Anteil anomaler Öffnung von 1d noch weiter herabsetzen. Tatsächlich unterdrückt bereits ein Methylsubstituent (Versuch 8) die anomale Öffnung soweit, daß wir nicht mit Sicherheit beurteilen können, ob sie überhaupt noch abläuft. Neben dem normalen Öffnungsprodukt 13M und seinen solvolytischen Folgeprodukten 14M und 12M lassen lediglich zusätzliche ¹H-NMR-Methylsinguletts zwischen 0.95 und 1.7 ppm in den Kristallisations-Mutterlaugen von 13M bzw. 14M die Vermutung zu, daß 6dM bzw. 7dM in sehr geringer Menge entstanden ist. Die beobachteten basenkatalysierten Sekundär-Additionen sind für elektronenziehend substituierte Nitrile nicht ungewöhnlich⁹, besonders, wenn deren α -C-Atom nicht deprotoniert werden kann^{8,13)}. Die Bildung von 14M (und evtl. von 7dM) zeigt nur, daß der verwendete Alkohol nicht vollständig wasserfrei war.

Eine weitere Vergrößerung des Carbanions durch Phenyl statt Methyl brachte ein völlig überraschendes Resultat (Versuch 9). Das Ausmaß der abrupten Trendumkehr (mindestens 46% anomale Öffnung) ist wegen der mittelmäßigen Produktbilanz schwer zu beurteilen, doch spricht eigentlich nichts gegen eine ausschließliche oder nahezu ausschließliche anomale Öffnung von 1d durch das Anion von 3P. Der in Versuch 9 nur geringe Überschuß an CH-acider Komponente begünstigt alkoholytische Folgereaktionen (6dP \rightarrow 8P, 6dP \rightarrow 19⁷) und andere wie z.B. Entacylierung⁷ oder Entsulfonylierung von 19) und auch eine direkte Alkoholyse von 1d. Bei der dünnschichtchromatographisch festgestellten Produktvielfalt haben wir auf Versuche zur Isolierung weiterer Produkte verzichtet.

Die in Versuch 9 gefundene Trendumkehr läßt eigentlich nur den Schluß zu, daß ein Wechsel im Öffnungsmechanismus stattgefunden hat, entsprechend unserer Hypothese²⁾ von S_N2 nach SET. Die Bildung eines Radikal-Anions von 1 im SET-Schritt sollte bei X = Sulfonyl mindestens nicht schwieriger ablaufen als bei X = Acyl. Es ist anschließend nur fraglich, welche Bindung bei 1d schneller homolytisch gespalten wird, die N-CMe₂-Bindung oder die N-S-Bindung¹⁴⁾. Bei 1d ist offensichtlich die Ringhomolyse schneller. Ein Wechsel zum SET-Mechanismus gerade bei diesem Carbanion läßt sich wohl mit der Arylacetonitril-Struktur von 3P in Beziehung bringen (vgl. Lit.¹).

Der ungewöhnliche Aspekt eines S_N 2-Angriffs an einem tertiären C-Atom und seine offenbare Abhängigkeit von der Größe des Nucleophils haben uns veranlaßt, auch das nicht rein erhaltene **12M** sowie die nur auf ein Indiz gestützte Vermutung der Bildung von **6dM** und **7dM** in den Bericht mit einzubeziehen. Im übrigen gibt gerade diese Vermutung Anlaß für den Hinweis, daß ein stellungsisomeres Nebenprodukt sich vom Hauptprodukt chromatographisch nicht wesentlich unterscheidet und daher in einer chromatographischen Nähe zum Hauptprodukt bzw. im ¹H-NMR-Spektrum des Hauptproduktes oder seiner Kristallisationsmutterlauge zu suchen war. Lediglich für den im allgemeinen wohl wenig wahrscheinlichen Fall unterschiedlicher Folgereaktionen isomerer Produkte könnten kleinere Mengen eines Nebenproduktes dem Nachweis entgangen sein. Ausnehmen müssen wir von dieser Überlegung erstens die Umsetzung von 21 mit 3P, wo 22 durch einfaches Abfiltrieren isoliert wurde, und zweitens Versuch 9, bei dem unterschiedliche Folgereaktionen von stellungsisomeren Produkten leichter vorstellbar sind.

Zum Zwecke der Strukturabsicherung der Produkte (siehe unten) wurden weitere zwei Umsetzungen durchgeführt. So erhielten wir 8P auch durch basenkatalysierte Methanolyse von 6bP, dessen Struktur sich durch Vergleich mit seinem Bisdemethylhomologen 20⁸⁾ einwandfrei absichern ließ. Als zusätzliches spektroskopisches Vergleichsmaterial wurde 22 aus 3P und dem aktivierten 2-Phenylaziridin 21 hergestellt (Ausbeute ohne Chromatographie 46%). In 22 sind die beiden Methylgruppen von 6bP durch einen Phenylrest ersetzt. Bemerkenswert ist es, daß nach Schmelzverhalten, ¹H-NMR- und ¹³C-NMR-Spektren nur eine der beiden diastereomeren Formen von 22 isoliert wurde. Wir können im nachhinein nicht mehr beurteilen, ob das andere Diastereomere (evtl. auch seine nicht cyclisierte Vorstufe) auch entstanden ist. Aber selbst wenn die Ringöffungsreaktion unter Inversion der Konfiguration ablaufen sollte, ist dies noch kein ausreichendes Indiz für einen S_N2-Mechanismus oder eine Widerlegung eines SET-Mechanismus¹⁵⁾. Für einen SET-Substitutions-Mechanismus unter Konfigurationsumkehr ist in allgemeiner Form eine mechanistische Interpretation vorgeschlagen worden¹⁵⁾, die ein radikalisches Pendant zum S_N1-Mechanismus mit Nucleophil-Addition von der Rückseite darstellt. Nach unserer Meinung sollte aber auch die einstufige Variante, nämlich das radikalische Pendant zum S_N2-Mechanismus diskutiert werden: Nu', $R - Y^- \rightarrow Nu - R + Y^-$ ohne Zwischenstufe. Untersuchungen zur Stereochemie der SET-Ringöffnung von Aziridinen sind in Arbeit.

Strukturaufklärung

Die Strukturzuordnung ist bei den Isomerenpaaren 15/17 und 16/18 mit Sicherheit an Hand der ¹H-NMR-Daten zu treffen. Die Signale für NCH₂ von 17 und 18 liegen für eine $=C-CH_2$ -Gruppe (bei den Alternativstrukturen 15/16) bei viel zu niedrigem Feld. Analoges gilt, wenn auch weniger deutlich, für den Einfluß der Tosylamidgruppe auf die Methylgruppen von 15 und 16, besonders bei einem Vergleich mit denen von 17 und 18. Die IR-Spektren zeigen zwei NH- und zwei SO₂-Banden sowie vor allem die zu erwartenden (isomerenweise übereinstimmenden) Verschiebungen von Nitril- und Carbonyl-Banden.

Noch direkter ergibt sich die Struktur für 12H und 13H aus dem Auftreten eines ABX-Spektrums (¹H-NMR). Hinzu kommt die ausDas inverse Anisotropie-Argument sowie die Tieffeldverschiebung der CH₂-Signale im Vergleich zu 12 H, 13 H, 13 M und 14 M belegen die Struktur von 8 M, 8 P und 6 b P. Die Verschiebungswerte der NCH₂-Gruppe von 6 b P passen gut zu seinem Bisdemethylhomologen 20 (NCH₂: $\delta = 4.07^{8}$) und stützen damit auch 8 P, das ja durch chemische Umsetzung mit 6 b P korreliert ist. Wie zu erwarten, reagiert die Verschiebung der NCH₂-Gruppe (8 M, P/6 b P) viel stärker auf den N-Substituenten (H oder Tosyl) als die N-C-CMe₂-Gruppe.

Die Strukturen der unerwarteten Produkte **8M** und **8P** wurden durch Vergleich ihrer ¹³C-NMR-Spektren mit denen von **20**, **22** und **6bP** weiter gesichert: Übereinstimmungen insbesondere für C-5 (NCH₂) von **6bP**, **8P** und **8M**. Die zu **8M** und **8P** isomeren Strukturen können nicht in eine entsprechende Übereinstimmung gebracht werden. **8M** wurde definitiv abgesichert durch gated decoupling des ¹³C-NMR-Spektrums, wobei sich nur die Quadrupletts bei 21.38 und 24.82 ppm weiter aufspalteten (benachbartes CH₂), nicht aber das Quadruplett bei 16.61 ppm.

Die Struktur von 22 ist durch das ¹H-NMR-Spektrum gesichert, und zwar durch die chemischen Verschiebungen im ABX-System des Pyrrolidonringes und durch die Kopplung von 11.6 Hz, die die Gemini-Natur der beiden Tieffeld-Multipletts belegt. Die Struktur von **5aP** ergibt sich ohne weiteres aus NH-Triplett und N-CH₂-Dublett des ¹H-NMR-Spektrums. Ebenso folgt die Struktur von **19** einwandfrei aus dem ¹H-NMR-Spektrum, da ein 2-H-Singulett bei 4.08 ppm und ein 1-H-Singulett bei 3.86 ppm mit alternativen Strukturen nicht vereinbar sind. Keine Anzeichen (IR, erfolglose H/ D-Austausch-Versuche) für NH waren bei **19** aufzufinden.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit.

Experimenteller Teil

IR-Spektrometer: Perkin-Elmer 283. – NMR-Spektrometer: Bruker WM 250 und HX-90 E, Varian T 60. ¹³C-NMR-Spektren (62.89 MHz, Bruker WM 250, TMS intern, off resonance) werden ohne Angabe der Aromatensignale beschrieben. – Chromatographie: Kieselgel Merck 0.063–0.2 mm, Säulenfüllung ist im Einzelfall angegeben (in cm). – DC: Aluminiumfolien Kieselgel 60 F_{254} Merck.

Die Aziridine $1b^{16}$ sowie 21^{17} und die anderen Azridine¹¹ sind beschrieben.

Allgemeine Methode (Tab. 1)

Zur Lösung des Natriums in Ethanol wurde 2, 3 bzw. 4 und danach 1a-d gegeben. Nach der angegebenen Zeit wurde im Rotationsverdampfer eingedampft. Der in Dichlormethan aufgenommene Rückstand wurde mit Wasser neutral gewaschen und wieder eingedampft. Die weitere Bearbeitung des Eindampfrückstandes ist im Einzelfall angegeben.

Versuch 1. 3,4,4-Trimethyl-2-oxo-3-pyrrolidincarbonitril (8M): Chromatographie (3 × 30) lieferte mit Dichlormethan 0.56 g (74%) Benzoesäure-ethylester und 0.68 g 3M, mit Ethylacetat 0.81 g eines Gemisches aus 3M und 8M. Letzteres kristallisierte, wurde abgenutscht und mit wenig kaltem Tetrachlormethan gewaschen. Ausb. 0.52 g (68%), Schmp. 144°C. – IR (KBr): 3220 cm⁻¹ (NH), 2245 (CN), 1710 (C=O). – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.13$ (s, O = C - C - Me), 1.35 (s, O = C - C - C - Me), 1.45 (s, O = C - C - C - Me, die Zuordnung der vorstehenden drei Methylsinguletts ist unsicher), 3.20 (m_c = d + d, fast s, J ca. 9.4 Hz, N - CH₂), 7.76 (s br., NH). - ¹³C-NMR (CDCl₃): δ = 16.61 (q, 3-Me), 21.38 (q, 4-Me), 24.82 (q, 4-Me), 41.94 (s, C-4), 49.17 (s, C-3), 52.61 (t, C-5), 118.48 (s, CN), 173.33 (s, C=O).

$$C_8H_{12}N_2O$$
 (152.2) Ber. C 63.13 H 7.95 N 18.41
Gef. C 62.97 H 8.03 N 18.69

Versuch 2. 4-Benzamido-2-cyan-3,3-dimethyl-2-phenylbuttersäureethylester (5aP): Abweichend von der allgemeinen Methode wurde der Eindampfrückstand mit Dichlormethan und verd. Natronlauge geschüttelt und nach Abtrennen der Natronlauge mit Wasser neutral gewaschen. Der Eindampfrückstand der organischen Phase wurde mit wenig kaltem Cyclohexan versetzt. Die entstandenen Kristalle wurden abgenutscht und mit wenig Cyclohexan gewaschen. Ausb. 1.21 g (60%) **5aP**, Schmp. 135°C. – IR (KBr): 3270 cm⁻¹ (NH), 2250 (CN), 1735 (Ester-C=O), 1625 (Amid I), 1540 (Amid II). – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.27$ (t, J = 7.1 Hz, O-C-Me), 1.27 (s, Me), 1.34 (s, Me), 3.64 (d, J = 6.5 Hz, N-CH₂), 4.28 (q, J = 7.0 Hz, 1 H von O-CH₂), 4.29 (q, J =7.2 Hz, 1 H von O-CH₂), 6.70 (t, br., J = 6.5 Hz, NH), 7.26–7.75 (m, 2 Ph).

Versuch 3. 4,4-Dimethyl-2-oxo-3-phenyl-1-(phenylcarbamoyl)-3pyrrolidincarbonitril (6bP): 6bP fiel aus der Reaktionslösung aus und wurde ohne weitere Aufarbeitung abgenutscht und nacheinander mit Ethanol und Petrolether (40-60°C) gewaschen. Ausb. 1.55 g (59%), Schmp. 164°C. – IR (KBr): 3300 cm⁻¹ (NH), 3290 (NH), 2255 (CN), 1722 (Pyrrolidon-C=O), 1698 (Amid I), 1548 (Amid II). – ¹H-NMR (90 MHz, CDCl₃): $\delta = 0.80$ (s, Me cis zu Ph), 1.48 (s, Me trans zu Ph), 3.69 (d, J = 11.4 Hz, 1H von N-CH₂), 3.87 (d, J = 11.4 Hz, 1H von N-CH₂), 7.04-7.62 (m, 2 Ph), 10.27 (s br., NH). – ¹³C-NMR (CDCl₃): $\delta = 22.53$ (q, Me), 25.09 (q, Me), 41.11 (s, C-4), 54.86 (t, C-5), 62.37 (s, C-3), 116.26 (s, CN), 148.98 (s, C=O exocycl.), 170.46 (s, C-2).

 $C_{20}H_{19}N_3O_2$ (333.4) Ber. C 72.06 H 5.74 N 12.60 Gef. C 72.22 H 5.64 N 12.86

Versuch 4. Die Reaktionsmischung zeigte vor der Aufarbeitung den typischen Geruch des leicht flüchtigen 9. Der nach der üblichen Aufarbeitung (allgemeine Methode) erhaltene Rückstand bestand lt. ¹H-NMR- und DC-Vergleich (Dichlormethan/Ethylacetat 10:0, 10:1, 10:3) mit authentischen Proben aus 1c, 2H und 11.

Versuch 5. 5,5-Dimethyl-2-oxo-1-(p-tolylsulfonyl)-3-pyrrolidincarbonsäure-ethylester (12H): Chromatographie (3 × 40, Dichlormethan) lieferte eine Mischung aus 2H und 1d und dann nicht ganz reines 12H, das mit wenig Tetrachlormethan zum Kristallisieren gebracht wurde. Abnutschen und Auswaschen mit kaltem Tetrachlormethan ergaben 1.68 g (62%) 12H. Schmp. 110°C. – IR (KBr): 1744 cm⁻¹ (Ester-C=O), 1721 (Pyrrolidon-C=O), 1352 (SO₂), 1160 (SO₂). – ¹H-NMR (250 MHz, CDCl₃): $\delta = 1.24$ (t, J = 7.1 Hz, O-C-Me), 1.66 (s, Me), 1.77 (s, Me), 2.15 (dd, ³J = 9.2 Hz, ²J =12.9 Hz, 1H von N-C-CH₂), 2.36 (dd, ³J = 10.3 Hz, ²J =12.9 Hz, 1H von N-C-CH₂), 2.43 (s, Me von Tos), 3.65 (X-Teil von ABX, O=C-CH), 4.18 (q, J = 7.1 Hz, O-CH₂), 7.30–7.33 (m, d-ähnlich mit " $J^{\mu} \approx 8.5$ Hz, *m*-H von Tos), 7.72–7.96 (m, dähnlich mit " $J^{\mu} \approx 8.5$ Hz, *o*-H von Tos).

```
\begin{array}{rrrr} C_{16}H_{21}NO_5S \ (339.4) & \mbox{Ber.} \ C \ 56.62 \ H \ 6.24 \ N \ 4.13 \\ & \mbox{Gef.} \ C \ 56.54 \ H \ 6.18 \ N \ 4.33 \end{array}
```

Versuch 6. Chromatographie (3×45) mit Dichlormethan lieferte 1.92 g (65%) eines Gemisches, das lt. ¹H-NMR-Analyse aus 1.385 g

(47%) 15 und 0.535 g (18%) 17 bestand. Erneute Chromatographie (3×138 , Dichlormethan/Ethylacetat, 10:1) der Hälfte dieses Gemisches lieferte eine Fraktion von 0.82 g und eine Fraktion von 0.10 g. Umkristallisieren der letzteren Fraktion aus Ethanol ergab 70 mg (5%) 17. Zweimaliges Umkristallisieren der ersten Fraktion aus Ethanol lieferte 0.23 g (16%) 15.

2-Amino-4,5-dihydro-5,5-dimethyl-1-(p-tolylsulfonyl)-3-pyrrolcarbonitril (15): Schmp. 134–136 °C. – IR (KBr): 3475 cm⁻¹ (NH), 3340 (NH), 2190 (CN), 1635 (C=C), 1345 (SO₂), 1167 (SO₂). – ¹H-NMR (90 MHz, CDCl₃): δ = 1.46 (s, 2 Me), 2.43 (s, Me von Tos), 2.45 (s, CH₂), 5.79 (s br., NH₂), 7.27–7.36 (m, d-ähnlich mit "J" \approx 8.5 Hz, *m*-H von Tos), 7.72–7.81 (m, d-ähnlich mit "J" \approx 8.5 Hz, *o*-H, von Tos).

2-Amino-4,5-dihydro-4,4-dimethyl-1-(p-tolylsulfonyl)-3-pyrrolcarbonitril (17): Schmp. 147–148 °C. – IR (KBr): 3440 cm⁻¹ (NH), 3320 (NH), 2190 (CN), 1650 (C=C), 1355 (SO₂), 1162 (SO₂). – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.01$ (s, 2 Me), 2.47 (s, Me von Tos), 3.41 (s, CH₂), 5.44 (s br., NH₂), 7.33–7.42 (m, d-ähnlich mit ,J" \approx 8.5 Hz, m-H von Tos), 7.70–7.79 (m, d-ähnlich mit ,J" \approx 8.5 Hz, o-H von Tos).

 $\begin{array}{cccc} C_{14}H_{17}N_3O_2S \ (291.4) & \mbox{Ber.} \ C \ 57.71 & \mbox{H} \ 5.88 & \mbox{N} \ 14.42 & \mbox{S} \ 11.00 \\ & \mbox{Gef.} \ C \ 57.35 & \mbox{H} \ 5.98 & \mbox{N} \ 14.19 & \mbox{S} \ 11.59 \end{array}$

Versuch 7. Chromatographie (3×50 , Dichlormethan) lieferte 1.) 18 mg (0.5%) 18, 2.) 0.15 g eines Gemisches aus 16 und 18, 3.) 1.97 g eines Gemisches aus 16 und 18 sowie 4.) 0.26 g eines Gemisches, aus dem durch zweimaliges Umkristallisieren aus Ethanol 58 mg (2%) 13H erhalten wurden. Die ¹H-NMR-Analyse von Fraktion 2.) und 3.) ergab 1.96 g (58%) 16 und 0.16 g 18, zusammen mit Fraktion 1.) also 0.18 g (5%) 18. Fraktion 3.) wurde aus Tetrachlormethan umkristallisiert, die anschließend eingedampfte Mutterlauge aus Ethanol umkristallisiert. Beide Kristallisate zusammen betrugen 0.82 g (25%) 16.

5.5-Dimethyl-2-oxo-1-(p-tolylsulfonyl)-3-pyrrolidincarbonitril (13H): Schmp. 153–154°C. – IR (KBr): 2260 cm⁻¹ (CN), 1743 (C=O), 1362 (SO₂), 1168 (SO₂). – ¹H-NMR (250 MHz, CDCl₃): $\delta = 1.66$ (s, Me), 1.78 (s, Me), 2.22 (dd, ³J = 11.2 Hz, ²J = 12.9 Hz, 1 H von CH₂), 2.38 (dd, ³J = 8.9 Hz, ²J = 12.9 Hz, 1 H von CH₂), 2.45 (s, Me von Tos), 3.65 (X-Teil von ABX, O=C-CH), 7.34–7.37 (m, d-ähnlich mit ,J" ≈ 8.5 Hz, *m*-H von Tos), 7.92–7.95 (m, dähnlich mit ,J" ≈ 8.5 Hz, *o*-H von Tos).

 $C_{14}H_{16}N_2O_3S \ (292.4) \quad \mbox{Ber. C } 57.52 \ \ H \ 5.52 \ \ N \ 9.58 \ \ S \ 10.97 \\ Gef. \ \ C \ 57.79 \ \ H \ 5.71 \ \ N \ 9.35 \ \ S \ 10.93$

2-Amino-4,5-dihydro-5,5-dimethyl-1-(p-tolylsulfonyl)-3-pyrrolcarbonsäure-ethylester (16): Schmp. 97–98 °C. – IR (KBr): 3480 cm⁻¹ (NH), 3330 (NH), 1667 (C=O), 1615 (C=C), 1340 (SO₂), 1160 (SO₂). – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.25$ (t, J = 7.1 Hz, O–C–Me), 1.45 (s, 2 Me), 2.42 (s, Me von Tos), 2.50 (s, CH₂), 4.19 (q, J = 7.1 Hz, O–CH₂), 6.92 (s, br., NH₂), 7.24–7.33 (m, d-ähnlich mit "J" ≈ 8.5 Hz, *m*-H von Tos), 7.77–7.84 (m, d-ähnlich mit "J" ≈ 8.5 Hz, *o*-H, *o*-H von Tos).

2-Amino-4,5-dihydro-4,4-dimethyl-1-(p-tolylsulfonyl)-3-pyrrolcarbonsäure-ethylester (18): Öl. – IR (Film): 3475 cm⁻¹ (NH), 3330 (NH), 1665 (C=O), 1615 (C=C), 1358 (SO₂), 1168 (SO₂). – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.07$ (s, 2 Me), 1.24 (t, J = 7.1 Hz, O-C-Me), 2.44 (s, Me von Tos), 3.32 (s, CH₂), 4.13 (q, J = 7.1 Hz, O-CH₂), 6.78 (s br., NH), 7.29–7.38 (m, d-ähnlich mit ,, $J^{**} \approx$ 8.5 Hz, *m*-H von Tos), 7.71 - 7.81 (m, d-ähnlich mit " $J^{**} \approx 8.5$ Hz, *o*-H von Tos).

 $\begin{array}{cccc} C_{16}H_{22}N_2O_4S \ (338.4) & \mbox{Ber.} \ C \ 56.79 \ H \ 6.55 \ N \ 8.28 \\ & \mbox{Gef.} \ C \ 56.39 \ H \ 6.39 \ N \ 8.12 \end{array}$

Versuch 8. Chromatographie (3×75) eines aliquoten Teils (88%) ergab mit Dichlormethan 0.31 g (16%) leicht verunreinigtes **13M**, aus dem durch Umkristallisieren aus Ethanol 0.22 g (12%) reines **13M** erhalten wurden. Weiteres Eluieren mit Dichlormethan lieferte 0.53 g (24%) eines Gemisches, das lt. ¹H-NMR-Analyse im wesentlichen aus **12M** bestand. Mit Dichlormethan/Ethylacetat (10:3) wurden schließlich 0.94 g (47%) leicht verunreinigtes **14M** eluiert, aus dem durch Umkristallisieren aus Ethanol 0.32 g (16%) reines **14M** erhalten wurden.

3,5,5-Trimethyl-2-oxo-1-(p-tolylsulfonyl)-3-pyrrolidincarbonsäure-ethylester (12M), nicht rein erhalten. – IR (Film): 1748 cm⁻¹ (Ester-C=O), 1730 (Pyrrolidon-C=O), 1360 (SO₂), 1162 (SO₂). – ¹H-NMR (60 MHz, CDCl₃): $\delta = 1.07$ (t, J = 6.8 Hz, O-C-Me), 1.42 (s, O=C-C-Me), 1.70 (s, N-CMe), 1.78 (s, N-CMe, die Zuordnung der vorstehenden drei Methylsinguletts ist nicht gesichert), 1.98 ("s", da die äußeren Dublett-Linien verdeckt sind, 1 H von CH₂), 2.43 (s, Me von Tos), 2.73 ("s", da die äußeren Dublett-Linien verdeckt sind, 1 H von CH₂), 4.08 (q, J = 6.8 Hz, O-CH₂), 7.25-7.40 (m, d-ähnlich mit "J" ≈ 8.5 Hz, *m*-H von Tos), 7.90-8.05 (m, d-ähnlich mit "J" ≈ 8.5 Hz, *o*-H von Tos).

3,5,5-Trimethyl-2-oxo-1-(p-tolylsulfonyl)-3-pyrrolidincarbonitril (13M): Schmp. 154°C. – IR (KBr): 2250 cm⁻¹ (CN), 1743 (C=O), 1352 (SO₂), 1161 (SO₂). – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.56$ (s, O=C-C-Me), 1.76 (s, N-CMe), 1.83 (s, N-CMe, die Zuordnung der vorstehenden drei Methylsinguletts ist nicht gesichert), 1.98 (d, J = 13.6 Hz, 1H von CH₂), 2.44 (s, Me von Tos), 2.57 (d, J = 13.5 Hz, 1H von CH₂), 7.30–7.39 (m, d-ähnlich mit "J" \approx 8.5 Hz, m-H von Tos), 7.89–7.98 (m, d-ähnlich mit "J" \approx 8.5 Hz, o-H von Tos).

3,5,5-Trimethyl-2-oxo-1-(p-tolylsulfonyl)-3-pyrrolidincarboxamid (14M): Schmp. 185–187°C. – IR (KBr): 3450 cm⁻¹ (NH), 1723 (Pyrrolidon-C=O), 1696 (Amid). – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.42$ (s, O=C-C-Me), 1.62 (s, N-CMe), 1.74 (s, N-CMe, die Zuordnung der vorstehenden drei Methylsinguletts ist nicht gesichert), 1.77 (d, J = 13.4 Hz, 1 H von CH₂), 2.43 (s, Me von Tos), 2.87 (d, J = 13.5 Hz, 1 H von CH₂), 6.00 (s br., 1 NH), 6.46 (s br., 1 NH), 7.28–7.37 (m, d-ähnlich mit "J" \approx 8.5 Hz, *o*-H von Tos).

Versuch 9. 8P fiel teilweise aus dem Eindampfrückstand aus. Die Kristalle wurden abgenutscht und mit wenig kaltem Tetrachlormethan gewaschen, wodurch 0.48 g 8P erhalten wurden. Das restliche Produktgemisch einschließlich Waschflüssigkeit wurde chromatographiert (2.5×50). Mit Dichlormethan/Ethylacetat (10:1) wurden 1.30 g einer teilweise kristallinen Fraktion eluiert. Absaugen und Auswaschen der Kristalle mit Tetrachlormethan ergaben 0.19 g (5%) 19. Weitere Elution mit Dichlormethan/Ethylacetat (10:1) lieferte 1.63 g eines Gemisches, das lt. DC (Dichlormethan/ Ethylacetat in mehreren Mischungsverhältnissen) aus mindestens 6 Komponenten bestand und nicht weiter untersucht wurde. Schließlich wurden mit Ethylacetat weitere 0.36 g 8P eluiert, zusammen also 0.84 g (39%).

4,4-Dimethyl-2-oxo-3-phenyl-3-pyrrolidincarbonitril (**8P**): Schmp. 163–165°C. – IR (KBr): 3250 cm⁻¹ (NH), 2245 (CN), 1722 (C=O), 1682 (C=O). - ¹H-NMR (90 MHz, CDCl₃): $\delta = 0.73$ (s, Me cis zu Ph), 1.47 (s, Me trans zu Ph), 3.13 (d, J = 10.4 Hz, 1 H von CH₂), 3.25 (d, J = 10.4 Hz, 1 H von CH₂), 7.39 (s, Ph), 7.90 (s br., NH). $- {}^{13}$ C-NMR (CDCl₃): $\delta = 23.00$ (q, Me), 25.62 (q, Me), 44.65 (s, C-4), 52.59 (t, C-5), 60.19 (s, C-3), 117.65 (CN), 171.97 (C-2).

C₁₃H₁₄N₂O (214.3) Ber. C 72.87 H 6.59 N 13.07 Gef. C 72.67 H 6.54 N 12.87

(3-Cyan-2,2-dimethyl-3-phenylpropyl)(p-tolylsulfonyl)carbamidsäure-ethylester (19): Schmp. 126° C. – IR (KBr): 2245 cm⁻¹ (CN), 1738 (C=O), 1348 (SO₂), 1168 (SO₂). - ¹H-NMR (250 MHz, CDCl₃): $\delta = 1.03$ (s, Me), 1.10 (t, J = 7.1 Hz, O-C-Me), 1.20 (s, Me), 2.44 (s, Me von Tos), 3.86 (s, NC-CH), 4.08 (s, N-CH₂), 4.08 $(q, J = 7.1 \text{ Hz}, O - CH_2), 7.30 - 7.33 (m, d-ähnlich mit "J" =$ 8.1 Hz, m-H von Tos), 7.34-7.41 (m, Ph), 7.76-7.80 (m, d-ähnlich mit "J" = 8.4 Hz, o-H von Tos). – ¹³C-NMR (CDCl₃): δ = 13.85 (q, O-C-Me), 21.65 (q, Me von Tos), 22.92 (q, 1 Me von CMe₂), 23.31 (q, 1 Me von CMe₂), 39.82 (s, quart. C), 47.23 (d, tert. C), 54.82 $(t, N-CH_2)$, 63.81 $(t, O-CH_2)$, 119.96 (s, CN), 152.93 (s, C=O). C22H26N2O4S (414.5) Ber. C 63.75 H 6.32 N 6.76 S 7.74 Gef. C 63.29 H 6.2 N 7.09 S 7.67

Methanolyse von 6bP: Eine Lösung von 0.21 g (9.0 mmol) Natrium in 45 ml Methanol wurde mit 0.60 g (1.8 mmol) 6bP 1 h unter Rückfluß erhitzt und dann im Rotationsverdampfer eingedampft. Der Rückstand wurde in Dichlormethan aufgenommen und mit Wasser neutral gewaschen. Im Eindampfrückstand wurden Phenylcarbamidsäure-methylester und 8P durch ¹H-NMR- und DC-Vergleich (Dichlormethan/Ethylacetat 10:0, 10:2, 10:4) mit authentischem Material bzw. mit 8P aus Versuch 9 identifiziert. 6bP war nicht mehr vorhanden.

3-Cyan-2-oxo-N,3,4-triphenyl-1-pyrrolidincarboxamid (22): Versuchsdurchführung (15 ml Ethanol, 7.0 mmol Natrium, 21.0 mmol **3P** und 7.0 mmol **21**, 21 d) und Aufarbeitung (Produkt **22** fiel aus) wie in Versuch 3. Ausb. 1.22 g (46%), Schmp. 179-182°C. - IR (KBr): 3280 cm⁻¹ (NH), 2245 (CN), 1720 (Pyrrolidon-C=O), 1710 (Amid I), 1535 sh (Amid II). $- {}^{1}$ H-NMR (250 MHz, CDCl₃): $\delta =$ 3.89 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 9.7$ Hz, N-C-CH), 4.38 (dd, ${}^{3}J =$ 9.8 Hz, ${}^{2}J = 11.6$ Hz, 1 H von CH₂), 4.49 (dd, ${}^{3}J = 7.6$ Hz, ${}^{2}J =$ 11.6 Hz, 1 H von CH₂), 7.09-7.58 (m, 2 Ph), 10.22 s br., NH). -¹³C-NMR (CDCl₃): $\delta = 47.02$ (t, C-5), 50.56 (d, C-4), 60.11 (s, C-3), 114.73 (s, CN), 148.75 (s, exocycl. C=O), 169.48 (s, C-2).

> C₂₄H₁₉N₃O₂ (381.4) Ber. C 75.57 H 5.02 N 11.02 Gef. C 75.71 H 4.76 N 10.78

3-Cyan-2-oxo-N,3-diphenyl-1-pyrrolidincarboxamid (20)⁸: ¹³C-NMR (CDCl₃): δ = 32.07 (t, C-4), 42.88 (t, C-5), 52.02 (s, C-3), 117.67 (s, CN), 148.81 (exocycl. C=O), 170.04 (s, C-2).

CAS-Registry-Nummern

1a: 21384-58-7 / 1b: 21383-74-4 / 1c: 108343-17-5 / 1d: 5048-64-6 / 2H: 105-53-3 / 3H: 105-56-6 / 3M: 1572-99-2 / 3P: 455307-5 / 4H: 109-77-3 / 5aP: 85809-16-1 / 6bP: 85809-17-2 / 8M: 85809-20-7 / 8P: 108343-27-7 / 9: 2658-24-4 / 11: 15386-84-2 / 12H: 108343-18-6 / 12M: 108343-26-6 / 13H: 108343-23-3 / 13M: 108343-25-5 / 14M: 108343-24-4 / 15: 108343-19-7 / 16: 108343-21-1 / 17: 108343-20-0 / 18: 108343-22-2 / 19: 108343-28-8 / 21: 19198-84-6 / 22: 108343-29-9 / PhCO2Et: 93-89-0 / Phenylcarbamidsäure-methylester: 2603-10-2

- ¹⁾ 41. Mitteilung: P. Assithianakis, H. Stamm, Chem. Ber. 120 (1987) 855
- ²⁾ H. Stamm, P. Assithianakis, B. Buchholz, R. Weiß, Tetrahedron Lett. 23 (1982) 5021.
- ³⁾ B. Buchholz, A. Onistschenko, H. Stamm, Z. Naturforsch., Teil B, 41 (1986) 1311.
- ⁴⁾ H. Stamm, P. Assithianakis, R. Weiß, G. Bentz, B. Buchholz, J. Chem. Soc., Chem. Commun. 1984, 753
- ⁵⁾ H. Stamm, A. Sommer, A. Woderer, W. Wiesert, P. Assithianakis, J. Org. Chem. 50 (1985) 4946.
- ⁶⁾ Auszugsweise in vorläufiger Form bereits mitgeteilt in Lit.²⁾
- ⁷⁾ H. Stamm, J. Budny, J. Chem. Res. 1979 (S) 368, (M) 4501-4530.
- ⁸⁾ J. Budny, H. Stamm, Arch. Pharm. (Weinheim, Ger.) 314 (1981) 779
- ⁹⁾ H. Stamm, L. Schneider, Chem. Ber. 108 (1975) 500.
- ¹⁰⁾ Man vergleiche: A. Brändström, Ark. Kemi 6 (1953) 155.
- ¹¹⁾ B. Buchholz, H. Stamm, Isr. J. Chem. 27 (1986) 17.
- ¹²⁾ Über das Radikal von 4H als Zwischenstufe durch Bromabspaltung aus Brommalononitril wurde früher berichtet: P. Boldt, L. Schultz, J. Etzenmüller, Chem. Ber. 100 (1967) 1281; K. Riemenschneider, H. M. Bartels, R. Dornow, E. Drechsel-Grau, W. Eichel, H. Luthe, Y. M. Matter, W. Michaelis, P. Boldt, J. Org. Chem. 52 (1987) 205. Diese reduktive Entbromierung ist sicherlich ein sehr leicht ablaufender Vorgang, wie auch durch einen Vergleich mit anderen α -Brom- β -dicarbonylverbindungen belegt werden kann: vgl. H. Stamm, V. Gailius, Chem.-Ztg. 109 (1985) 434, und die dort zitierte Literatur. Man kann daher das Resultat von Boldt nicht als Basis für eine andere mechanistische Erklärung heranziehen. Unsere Erklärung ist in sich konsistent, während verschiedene Argumente gegen eine SET-Bildung der an-omalen Produkte aus 1d und 4H, 3H bzw. 3M sprechen. Wir halten im allgemeinen eine SET-Reaktion neben einer ausreichenden S_N2-Reaktionsgeschwindigkeit für die normale Öffnung für wenig wahrscheinlich. Weiterhin erschwert die vergleichsweise große thermodynamische Stabilität der zu oxidierenden Carbanionen (Nu⁻) von 2-4 eine SET-Reaktion wohl generell, was sich ja auch in der langen Reaktionszeit bei Versuch 1-3zeigt. Vor allem aber sollte - ganz im Gegensatz zum experimentellen Befund - der relative Anteil anomaler Produkte bei 3M höher sein als bei 3H, weil im Vergleich zu 3H bei 3M das Radikal Nu energieärmer und das Carbanion Nu energiereicher sein sollte. – Der Wechsel zu SET bei 3P ist verständlich wegen der Stabilisierung von Nu[•] durch den Phenylrest. Gesi-cherte oder wahrscheinliche SET-Reaktionen von N-Acylaziridinen wurden bislang nur beschrieben^{1,2,5)} für Nu^- vom Benzyltyp. ¹³⁾ H. Stamm, L. Schneider, J. Budny, *Chem. Ber.* **109** (1976) 2005.
- ¹⁴⁾ Sungchul Ji, L. B. Gortler, A. Waring, A. Battisti, S. Bank, W. D. Člosson, P. Wriede, J. Am. Chem. Soc. 89 (1967) 5311; W. D. Closson, Sungchul Ji, S. Schulenberg, ibid. 92 (1970) 650
- ¹⁵⁾ E. C. Ashby, R. Depriest, J. Am. Chem. Soc. 104 (1982) 6144

3536.

¹⁶⁾ J. V. Karabinos, K. T. Serijan, J. Am. Chem. Soc. 67, (1945) 1865. ¹⁷⁾ A. Nabeya, T. Shigemoto, Y. Iwakura, J. Org. Chem. 40 (1975)

[40/87]